Frank Borman (CDR)

It is about the same. The trouble is it is pointed at us pretty well.

Mike Collins (CAPCOM)

Frank, what we want to do is get a radial upward burn; and as long as you can, through the optics or some other means out the window, figure out where the earth is, then use the appropriate thrusters to thrust upward, radially upward for 3 feet per second. That is what we are looking for for trajectory reasons.

Frank Borman (CDR)

Okay. Understand. I just—as I say, I just can't very well do that now. I don't want to lose sight of this S-IVB.

Mike Collins (CAPCOM)

Roger. We concur with that. I just thought perhaps Jim, through his optics, or you could get some feel for where the earth is. That's what we want to do, is radially upward.

Frank Borman (CDR)

Okay. As soon as we find the earth, we will do it.

Frank Borman (CDR)

Houston. The venting on the S-IVB is terminated.

Frank Borman (CDR)

Go ahead, Houston. Apollo 8.

Mike Collins (CAPCOM)

Roger. Frank, do you think you are going to be able to do this burn radially? We would like to add to its magnitude if you are going to make it in some other direction. Over.

Frank Borman (CDR)

No, I am not even sure we are going to do it yet, Mike. If I can get—we seem to be drifting away from this thing a little bit, although it is still pointing at us quite closer than I'd like.

Mike Collins (CAPCOM)

Apollo 8, Houston. We would like you to do some additional maneuver; it is just a question of how much and in which direction.

Frank Borman (CDR)

Okay. Right now, our gimbal angles are about—roll's about 190 and pitch is about 320 and yaw is about 340. We could certainly do it in this position. That would be alright.

Mike Collins (CAPCOM)

Stand by. We will check those.

Frank Borman (CDR)

Go ahead, Houston. Apollo 8.

Mike Collins (CAPCOM)

Roger, Frank. You could help us out if you would explain where you are relative to the booster. In other words, with respect to the earth and the radius back there, are you above or below or one side, or where exactly is the booster relative to you?

Frank Borman (CDR)

Well, it's as I said before. We can't definitely find the earth. I think we are in front and a little bit above—a little bit above the—almost in front of the—directly in the front of the booster.

Mike Collins (CAPCOM)

Roger. Understand; almost directly in front of the booster.

Frank Borman (CDR)

Perhaps a little bit horizontally displaced towards the—let's see—Houston, to help you, we are looking right directly above the S-IVB with the sun—it's on the right side of the S-IVB and on our—coming in our left number 1 window.

Mike Collins (CAPCOM)

Okay. Understand; the sun is on the right side of the S-IVB and coming in your number 1 window. And are you—when you give us those angles, that means that your plus X-axis is pointed at it with those angles. Is that affirm?

Frank Borman (CDR)

The earth is in our plus Y, plus Z-direction now, Mike.

Mike Collins (CAPCOM)

Thank you. Earth is plus Y, plus Z.

Frank Borman (CDR)

Right, and a little minus X.

Jim Lovell (CMP)

Houston, for information. I am looking through the scanning telescope now, and I see millions of stars; most of them—the venting from the S-IVB.

Mike Collins (CAPCOM)

Right. Are you having any trouble telling which are the stars and which are the S-IVB particles?

Jim Lovell (CMP)

Definitely; we are in sunlight, and it looks like they are all S-IVB, but we don't know. I am going to attempt a P52 realign at this time and see what I can do.

Frank Borman (CDR)

Mike, anything more on this separation maneuver you're on?

Mike Collins (CAPCOM)

We are working on it, Frank. We are trying to compute what radially outward will be in close terms. Now, you still have the earth—as I understand plus Y and plus Z quadrant. In other words, it's down below you on your right and slightly to your rear? Is that still true?

Frank Borman (CDR)

That's right. Quite a bit to our rear and down below us. Off to the right.

Mike Collins (CAPCOM)

Okay. Well, we—of course, in that attitude, you want to burn some upward and some to the left, and we are trying to be more precise than that. Frank, is it still about the same distance away? Are you opening or closing?

Frank Borman (CDR)

It sure is staying close to us.

Frank Borman (CDR)

Mike, can you just tell us which way the S-IVB pitches and how far it will pitch to the sling shot maneuver attitude?

Mike Collins (CAPCOM)

Frank, the S-IVB is within 10 degrees of its final attitude at this time.

Bill Anders (LMP)

Houston, are you ready to copy the IMU align information?

Bill Anders (LMP)

Alright. Star ID is 03, and star 36, star angle difference 0.01, torquing angle X minus 00034, Y minus 0027, Z plus 00100. Over.

Mike Collins (CAPCOM)

Okay, thank you. For Y, I just got four digits here: 0027.

Bill Anders (LMP)

Roger. Three zeros: 00027.

Jim Lovell (CMP)

Houston, we are going to have to hold up on the cislunar navigation until after this next little maneuver.

Mike Collins (CAPCOM)

Roger, Jim. We understand.

Expand selection down Contract selection up

Spoken on Dec. 21, 1968, 5:19 p.m. UTC (55 years, 11 months ago). Link to this transcript range is: Tweet

Mike Collins (CAPCOM)

Can you give us an updated readout of your gimbal angles. When your plus X-axis is pointed toward the booster, please?

Mike Collins (CAPCOM)

Could you give us those gimbal angles, Frank, when you have a chance?

Frank Borman (CDR)

I'm getting the COAS right on it now so it will be accurate.

Frank Borman (CDR)

Okay. With the COAS right on the S-IVB, the roll reads 105, the pitch is 275, and the yaw is about 325.

Mike Collins (CAPCOM)

Roger. Copy roll 105, pitch 275, and yaw 325.

Frank Borman (CDR)

Roger. That should be 115 for the roll.

Bill Anders (LMP)

Houston, Apollo 8. Over.

Mike Collins (CAPCOM)

Apollo 8, Houston. Go ahead.

Bill Anders (LMP)

Roger. If it will help you any, Mike, the earth is plus Y about 45 degrees in a minus X. I can see it out my side window, and it's a beautiful view with numerous cloud vortex.

Mike Collins (CAPCOM)

Roger, Bill. Thank you. Understand; plus X 45 degrees halfway between plus Y and plus Z and slightly minus X.

Bill Anders (LMP)

Negative. It's 45 degrees in the plus Y, in the XY plane towards minus X. Over.

Mike Collins (CAPCOM)

Roger. Understand in the XY plane, toward X 45 degrees.

Bill Anders (LMP)

Forty-five degrees from plus Y to minus X.

Bill Anders (LMP)

It's behind us to the right, if that will help.

Frank Borman (CDR)

I can still see the Cape and isthmus of Central America.

Mike Collins (CAPCOM)

Roger. Understand. Frank, what we want on this burn is 8 feet per second now, 8 feet per second. We want it radially upward, and we want you to use whatever thrusters are required to burn radially upward at 8 feet per second.

Frank Borman (CDR)

Why do you want to use—do so much, Mike?

Mike Collins (CAPCOM)

Because of the separation distance we would like to achieve between now and the time of S-IVB blowdown.

Frank Borman (CDR)

Mike, do you want me to go ahead and try to do this, or are you going to give me some gimbal angles?

Mike Collins (CAPCOM)

Apollo 8, Houston. Go ahead and do it without gimbal angles, if you can do that. Over.

Frank Borman (CDR)

Okay. I don't understand why you want so many feet per second on it, but I think I can—with just a little maneuvering, I can get away from it a lot simpler than that.

Mike Collins (CAPCOM)

Well, we would like the radial upward for trajectory reasons, and the magnitude we'd like because of the separation distance which we're predicting you will have at S-IVB blowdown.

Mike Collins (CAPCOM)

Understand; OMNI B Baker.

Bill Anders (LMP)

Go ahead, Houston. Apollo 8.

Mike Collins (CAPCOM)

Roger. About 12 minutes before your big blowdown, there is a small continuous vent which opens at a GET of 04:55:55. You may notice that on the booster, 12- or 15-pound thrust.

Mike Collins (CAPCOM)

And, Apollo 8, could you give us your burn information whenever you have it?

Bill Anders (LMP)

Roger. We are maneuvering to the attitude now.

Frank Borman (CDR)

Okay, Houston. I understand you want 8 feet per second burn, is that right?

Mike Collins (CAPCOM)

Right. Eight feet per second, radially upward.

Frank Borman (CDR)

Well, we are as close to being radially upward as we can determine.

Mike Collins (CAPCOM)

Roger.

Mike Collins (CAPCOM)

Apollo 8, Houston. Are you going to use P47 to monitor the burn?

Jim Lovell (CMP)

Yes, Jim, that's Roger. We are putting it in right now.

Mike Collins (CAPCOM)

Thank you.